skip to main content


Search for: All records

Creators/Authors contains: "Forrest, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M∼ 1011M), Milky Way–mass, and low-mass (M∼ 109.5M) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift.

     
    more » « less
  2. ABSTRACT

    We explore models of massive (>1010 M⊙) satellite quenching in massive clusters at z ≳ 1 using an MCMC framework, focusing on two primary parameters: Rquench (the host-centric radius at which quenching begins) and τquench (the time-scale upon which a satellite quenches after crossing Rquench). Our MCMC analysis shows two local maxima in the 1D posterior probability distribution of Rquench at approximately 0.25 and 1.0 R200. Analysing four distinct solutions in the τquench–Rquench parameter space, nearly all of which yield quiescent fractions consistent with observational data from the GOGREEN survey, we investigate whether these solutions represent distinct quenching pathways and find that they can be separated between ‘starvation’ and ‘core quenching’ scenarios. The starvation pathway is characterized by quenching time-scales that are roughly consistent with the total cold gas (H2 + H i) depletion time-scale at intermediate z, while core quenching is characterized by satellites with relatively high line-of-sight velocities that quench on short time-scales (∼0.25 Gyr) after reaching the inner region of the cluster (<0.30 R200). Lastly, we break the degeneracy between these solutions by comparing the observed properties of transition galaxies from the GOGREEN survey. We conclude that only the ‘starvation’ pathway is consistent with the projected phase-space distribution and relative abundance of transition galaxies at z ∼ 1. However, we acknowledge that ram pressure might contribute as a secondary quenching mechanism.

     
    more » « less
  3. ABSTRACT

    We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$), no additional environmental quenching is required.

     
    more » « less
  4. ABSTRACT

    Simulations predict that the galaxy populations inhabiting protoclusters may contribute considerably to the total amount of stellar mass growth of galaxies in the early universe. In this study, we test these predictions observationally, using the Taralay protocluster (formerly PCl J1001+0220) at z ∼ 4.57 in the COSMOS field. With the Charting Cluster Construction with VUDS and ORELSE (C3VO) survey, we spectroscopically confirmed 44 galaxies within the adopted redshift range of the protocluster (4.48 < z < 4.64) and incorporate an additional 18 galaxies from ancillary spectroscopic surveys. Using a density mapping technique, we estimate the total mass of Taralay to be ∼1.7 × 1015 M⊙, sufficient to form a massive cluster by the present day. By comparing the star formation rate density (SFRD) within the protocluster (SFRDpc) to that of the coeval field (SFRDfield), we find that SFRDpc surpasses the SFRDfield by Δlog (SFRD/M⊙yr−1 Mpc−3) = 1.08 ± 0.32 (or ∼12 ×). The observed contribution fraction of protoclusters to the cosmic SFRD adopting Taralay as a proxy for typical protoclusters is $33.5~{{\ \rm per\ cent}}^{+8.0~{{\ \rm per\ cent}}}_{-4.3~{{\ \rm per\ cent}}}$, a value ∼2σ higher than the predictions from simulations. Taralay contains three peaks that are 5σ above the average density at these redshifts. Their SFRD is ∼0.5 dex higher than the value derived for the overall protocluster. We show that 68 per cent of all star formation in the protocluster takes place within these peaks, and that the innermost regions of the peaks encase $\sim 50~{{\ \rm per\ cent}}$ of the total star formation in the protocluster. This study strongly suggests that protoclusters drive stellar mass growth in the early universe and that this growth may proceed in an inside-out manner.

     
    more » « less
  5. ABSTRACT

    Motivated by spectroscopic confirmation of three overdense regions in the COSMOS field at z ∼ 3.35, we analyse the uniquely deep multiwavelength photometry and extensive spectroscopy available in the field to identify any further related structure. We construct a three-dimensional density map using the Voronoi tesselation Monte Carlo method and find additional regions of significant overdensity. Here, we present and examine a set of six overdense structures at 3.20 < z < 3.45 in the COSMOS field, the most well-characterized of which, PCl J0959 + 0235, has 80 spectroscopically confirmed members and an estimated mass of 1.35 × 1015 M⊙, and is modelled to virialize at z ∼ 1.5−2.0. These structures contain 10 overdense peaks with >5σ overdensity separated by up to 70 cMpc, suggestive of a proto-supercluster similar to the Hyperion system at z ∼ 2.45. Upcoming photometric surveys with JWST such as COSMOS-Web, and further spectroscopic follow-up will enable more extensive analysis of the evolutionary effects that such an environment may have on its component galaxies at these early times.

     
    more » « less
  6. Abstract

    In this work, we publish stellar velocity dispersions, sizes, and dynamical masses for eight ultramassive galaxies (UMGs;log(M*/M)> 11),z≳ 3) from the Massive Ancient Galaxies Atz> 3 NEar-infrared (MAGAZ3NE) Survey, more than doubling the number of such galaxies with velocity dispersion measurements at this epoch. Using the deep Keck/MOSFIRE and Keck/NIRES spectroscopy of these objects in theHandKbandpasses, we obtain large velocity dispersions of ∼400 km s−1for most of the objects, which are some of the highest stellar velocity dispersions measured and ∼40% larger than those measured for galaxies of similar mass atz∼ 1.7. The sizes of these objects are also smaller by a factor of 1.5–3 compared to this samez∼ 1.7 sample. We combine these large velocity dispersions and small sizes to obtain dynamical masses. The dynamical masses are similar to the stellar masses of these galaxies, consistent with a Chabrier initial mass function (IMF). Considered alongside previous studies of massive quiescent galaxies across 0.2 <z< 4.0, there is evidence for an evolution in the relation between the dynamical mass–stellar mass ratio and velocity dispersion as a function of redshift. This implies an IMF with fewer low-mass stars (e.g., Chabrier IMF) for massive quiescent galaxies at higher redshifts in conflict with the bottom-heavy IMF (e.g., Salpeter IMF) found in their likelyz∼ 0 descendants, though a number of alternative explanations such as a different dynamical structure or significant rotation are not ruled out. Similar to data at lower redshifts, we see evidence for an increase of IMF normalization with velocity dispersion, though thez≳ 3 trend is steeper than that forz∼ 0.2 early-type galaxies and offset to lower dynamical-to-stellar mass ratios.

     
    more » « less
  7. Abstract

    We report the discovery of MAGAZ3NE J095924+022537, a spectroscopically confirmed protocluster atz=3.36650.0012+0.0009around a spectroscopically confirmedUVJ-quiescent ultramassive galaxy (UMG;M=2.340.34+0.23×1011M) in the COSMOS UltraVISTA field. We present a total of 38 protocluster members (14 spectroscopic and 24 photometric), including the UMG. Notably, and in marked contrast to protoclusters previously reported at this epoch that have been found to contain predominantly star-forming members, we measure an elevated fraction of quiescent galaxies relative to the coeval field (73.316.9+26.7%versus11.64.9+7.1%for galaxies with stellar massM≥ 1011M). This high quenched fraction provides a striking and important counterexample to the seeming ubiquitousness of star-forming galaxies in protoclusters atz> 2 and suggests, rather, that protoclusters exist in a diversity of evolutionary states in the early universe. We discuss the possibility that we might be observing either “early mass quenching” or nonclassical “environmental quenching.” We also present the discovery of MAGAZ3NE J100028+023349, a second spectroscopically confirmed protocluster, at a very similar redshift ofz=3.38010.0281+0.0213. We present a total of 20 protocluster members, 12 of which are photometric and eight spectroscopic including a poststarburst UMG (M=2.950.20+0.21×1011M). Protoclusters MAGAZ3NE J0959 and MAGAZ3NE J1000 are separated by 18′ on the sky (35 comoving Mpc), in good agreement with predictions from simulations for the size of “Coma”-type cluster progenitors at this epoch. It is highly likely that the two UMGs are the progenitors of Brightest Cluster Galaxies seen in massive virialized clusters at lower redshift.

     
    more » « less
  8. Abstract

    We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.

     
    more » « less